Strategy for genetic testing in Charcot-Marie-Disease

نویسندگان

  • L.J. Miller
  • A.S.D. Saporta
  • S.L. Sottile
  • C.E. Siskind
  • S.M.E. Feely
  • M.E. Shy
چکیده

BACKGROUND Charcot Marie Tooth disease (CMT) affects one in 2500 people. Genetic testing is often pursued for family planning purposes, natural history studies and for entry into clinical trials. However, identifying the genetic cause of CMT can be expensive and confusing to patients and physicians due to locus heterogeneity. METHODS We analyzed data from more than 1000 of our patients to identify distinguishing features in various subtypes of CMT. Data from clinical phenotypes, neurophysiology, family history, and prevalence was combined to create algorithms that can be used to direct genetic testing for patients with CMT. FINDINGS The largest group of patients in our clinic have slow motor nerve conduction velocities (MNCV) in the upper extremities. Approximately 88% of patients in this group have CMT1A. Those who had intermediate MNCV had primarily CMT1X (52.8%) or CMT1B (27.8%). Patients with very slow MNCV and delayed walking were very likely to have CMT1A (68%) or CMT1B (32%). No patients with CMT1B and very slow MNCV walked before 15 months of age. Patients with CMT2A form our largest group of patients with axonal forms of CMT. INTERPRETATION Combining features of the phenotypic and physiology groups allowed us to identify patients who were highly likely to have specific subtypes of CMT. Based on these results, we created a series of algorithms to guide testing. A more detailed review of this data is published in Annals of Neurology (1).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Charcot–Marie–Tooth disease: Genetics, epidemiology and complications

Background and aims: Charcot Marie Tooth disease (CMT) is the most prevalent hereditary neuropathy and its frequency is 1 in 2500. CMT is a heterogeneous disease and has different clinical symptoms. The prevalence of CMT and involved genes differ in different countries. CMT patients experience considerable sleep problems and a higher risk of decreased quality of life. In this w...

متن کامل

Whole Exome Sequencing Revealed a Novel GJB1 Pathogenic Variant and a Rare BSCL2 Mutation in Two Iranian Large Pedigrees with Multiple Affected Cases of Charcot-Marie-Tooth

Charcot-Marie-Tooth disease (CMT) is the most common hereditary neuropathy of the peripheral nervous system with a wide range of severity and age of onset. CMT patients share similar phenotypes which make it often impossible to identify the disease types based on clinical presentation and electrophysiological studies alone. In recent years, novel genetic diagnostic approaches such as whole exom...

متن کامل

Charcot-Marie-Tooth disease subtypes and genetic testing strategies.

OBJECTIVE Charcot-Marie-Tooth disease (CMT) affects 1 in 2,500 people and is caused by mutations in more than 30 genes. Identifying the genetic cause of CMT is often necessary for family planning, natural history studies, and for entry into clinical trials. However genetic testing can be both expensive and confusing to patients and physicians. METHODS We analyzed data from 1,024 of our patien...

متن کامل

Charcot-marie-tooth Disease: Genetic and Rehabilitation Aspects

Charcot-Marie-Tooth hereditary motor and sensory neuropathy refers to a group of disorders characterized by a chronic motor and sensory polyneuropathy. Typical cases have distal muscle weakness and peroneal atrophy often associated with mild to moderate sensory loss, depressed tendon reflexes, and pes cavus. Hereditary neuropathies are categorized by mode of inheritance and chromosomal locus. T...

متن کامل

Six new gap junction beta 1 gene mutations and their phenotypic expression in Czech patients with Charcot-Marie-Tooth disease.

X-linked Charcot-Marie-Tooth (CMTX) disease is a hereditary motor and sensory neuropathy caused by mutations in the gap junction beta 1 gene (GJB1 codes for connexin 32). In this study we report six novel mutations p.Met1Arg, p.Leu9Phe, p.Ser17Tyr, p.Val63Phe, p.Val170Ile, and p.Leu212Phe in GJB1 and their phenotypic expression. These mutations affect both intracellular and extracellular parts ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2011